2017 - Sustainable Industrial Processing Summit & Exhibition
sips2017-LOGO Symposium Banner sips2017-Banner
22-26 October 2017, Fiesta Americana Condesa Cancun All Inclusive Resort, Cancun, Mexico
Almost 400 Abstracts Submitted from 60 Countries
Summit
Venue
Information
Sponsorship
Submission
Program
Registration
Instructions
Post Summit
Previous Events
spq
iacis1
IOM3
msdg
PLENARY LECTURES AND VIP GUESTS
Michael J._Zehetbauer

Michael J. Zehetbauer

University of Vienna, Faculty of Physics

Role Of Nanocrystalline Structure For The Storage Kinetics Of Hydrogen Storage Materials: Surface Or Bulk Effect ?
3rd Intl. Symp. Surfaces and Interfaces of Sustainable, Advanced Materials (SISAM)

Back to Plenary Lectures »

Abstract:

There is the widespread opinion within the research community of hydrogen storage materials, that their nanocrystalline structure is a precondition for enhancement of the kinetics of hydrogen absorbtion/desorption, by means of enhanced diffusion of H2 along the grain boundaries. Examples for this behavior are presented, including ball milled, filed and/or SPD processed Mg, Mg- and Fe-alloys. SPD (Severe Plastic Deformation) represents a new method processing method to achieve bulk nanocrystalline materials. Considering more than one storage cycles in pure Mg, the kinetics and even the storage capacity is drastically decreased. One may find the reason in the strongly increased grain size because of the comparably high absorption/desorption temperature of 350°C. However, in the SPD processed Mg-alloys like ZK60, the kinetics and the storage capacity do not decrease with repeated absorption/desorption cycles, although the average grain size significantly increases. Thus it is concluded that the grain size effect beneficial to storage kinetics during the first cycles must have a reason other than hydrogen grain boundary diffusion. Recent DFT calculations within a research project of the authors suggest that the dissocation of H2 to H - which is a precondition of successful absorption of hydrogen by the host material - occurs more easily at the surface and especially in the wake of crystal defects being present at the surface. Experiments by the authors done in Mg-alloys and Fe-Ti having various initial ball milling particle sizes and/or grain sizes confirm this conclusion. Furthermore, recent experiments both from literature and from the authors showed that application of SPD can save the pulverization and/or filing of the H2 storage materials, by providing not only high densities of grain boundaries but also those of microcracks at the surface.

Distinguished Guests

Prof. Dan Shechtman
2011 Nobel Prize Winner
Member Area

LOGIN

Translate site in 50+ languages
Flogen not responsable for translation
Notebook

<<     April 2024     >>

  • MO
  • TU
  • WE
  • TH
  • FR
  • SA
  • SU
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 1
  • 2
  • 3
  • 4
  • 5




Cancun, Mx Weather


Current Weather Report
Click Here




acs
sdk-logo
mrs-serbia
apmmmperu
gdmb_allg

FLOGEN STAR OUTREACH is a not-for-profit, non-political and all-inclusive science organization that takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.

foot

SIPS is the flagship event of FLOGEN STAR OUTREACH, a not-for-profit, non-political and all-inclusive science organization. SIPS as well as FLOGEN STARS OUTREACH takes no sides in political, scientific or technological debates. We equally welcome, without reservations, all spectrum of ideas, theories, technologies and related debates. Statements and opinions expressed are those of individuals and/or groups only and do not necessary reflect the opinions of FLOGEN, its sponsors or supporters.


© FLOGEN Star OUTREACH | Home | Contact Us | Privacy Policy | Cancellations/Refund Policy

© Copyright of FLOGEN Stars Outreach Organization: The content of this page including all text and photos are copyright of FLOGEN Stars Outreach and none can be used in their original or in any modified or combined form in any publication, web site or in any other medium whatsoever without prior written permission of FLOGEN Stars Outreach.